
teristlcs of the furnace medium of powdered coal furnaces in any zone of the furnace chamber. 

NOTATION 

w, c, and t, velocity, specific heat, and temperature of the combustion products, respec- 
tively; Eres, resultant heat flux over the surface of the volume considered; q, heat released 

w lowest heat of combustion of the working mass of fuel; n and m, fraction per unit volume; QZ, 

of the fuel and recirculatlon per layer, respectively; 8, degree of burning of the fuel in 
the zone; A~, degree of burning in a specified zone from the combustion of the fuel intro- 
duced into previous zones; t,, t2, c,, and c2, temperature and heat capacity of the combus- 
tion products at the entrance and the exit from the zone, respectively; tg, Cg, and r, temp- 
erature, heat capacity, and fraction of the reclrculation gases; Bp, theoretical fuel flow 
rate; ~, thermal efficiency; F, surface bounding the zone; Vc2, total heat capacity of the 
combustion products for t2; Aet = Etcal -- Etexp, difference between the theoretical degree of bright- 
ness of the surface volume and the experimental value; rt, rco2, and rHaO, total volume fraction of 

triatomic gases and the volume fraction of C02 and H20, respectively; ~a, dimensionless con- 
centration of ash particles; da, effective diameter of the ash particles; • and ~2, quanti- 
ties which take into account the concentration of coke particles in the combustion product; 
PD' total partial pressure of the gases; T, temperature of the combustion products; Uc~ca, 
dimensionless and actual concentration of coke particles; and oo, emissivity of blackbody. 

. 
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PROBABILISTIC MODELING OF VIBRATIONALLY NONEQUILIBRIUM DIATOMIC 

GASES IN THE THEORY OF RADIATION TRANSFER 

V. I. Kruglov, L. V. Katkovskli, 
and Yu. V. Khodyko 

UDC 536.3:518.6 

The radiation transfer in a vibrationally nonequilibrium diatomlc gas is described 
by a system of equations which can be reduced to one integrodlfferential equation 
for the vibrational energy density. A method for the numerical solution of this 
equation by using the theory of Markov chains is proposed in the paper, 

The investigation of radiation transfer in nonequillbrlum gases is closely associated 
with such areas of application as spectroscopy, low-temperature plasmas, molecular gasdynam- 
ic lasers, radiation gasdynamics, and physics of the upper layers of a planetary atmosphere. 
In the general case, the problem reduces to solving a system of equations of Boltzmann type 
for material particles and photons [I, 2]. Obtaining concrete results by direct integration 
of the system of equations is hence a very complex mathematical problem, Hence, examination 
of such physical situations when the problem allows of specific slmpllfciations is of inter- 
est. The present paper is devoted to an investigation of radiation energy transfer in non- 
equilibrium diatomic heteronuclear gases (CO, HCI, NO, etc., for example) both because of the 
relative simplicity of configuration of diatomlc molecules and the practical importance of 
such gases for radiation gasdynamlcs and atmospheric optics problems. Radiation processes 
exert a substantial effect, together with inelastic collisions on the population of the vlbra- 
tional--rotatlonal molecule levels at reduced pressures of the radiating medium p ~ i0-~-i0 -3 
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and the temperatures T ~ l-3.10S~ when the maximum of the Planck functions is in the fre- 
quency range corresponding to vibrational--rotational transitions. The emergence of radiation 
outside the boundaries of the emitting volume in this case results in spoilage of the local 
thermodynamic equilibrium. However, a representation about the local equilibrlumwithln sepa- 
rate degrees of freedom [3, 4], and particularly, about the vibrational temperature Tv(r ) 
which differs from the translational T(r) (the temperature of the rotational degrees of free- 
dom also equals T(r)), can be introduced for a broad class of problems. The radiation char- 
acteristics of such a partially equilibrium medium are determined by the radiation transfer 
equation in which the source function depends on Tv(r ) or the equivalent parameter r the 
gas vibrational energy density. In turn, a kinetic equation must be written for r where 
besides the relaxation term, a term describing the influence of the radiation transitions 
should be present. 

Considering the diatomic molecules in the "quantum oscillator--rigld rotator" approxima- 
tion, the following system of equations can be written for the gas vibrational energy density 
E(r) and the spectral intensity I(k, z): 

v h e r e  

nvl'(k, r) = k~ (r) (Iv ~ (r) -- I (k, r)), 
( O ) e~  1 

+ v (rN e (r) = ,o (r) p (r) m V Iv S. (r) dr, 
( ) 

(1)  

(2) 

k, (r) = h~U (r) B ~ S,~, (0 e,. (v, r), 

exp { - - ( v - - v : ~ ) ' } "  
~j~ (r) | (v, r) = 

$j .  (r) ffi (] + cO ~B-----z-" exp {--  i ff + 1) 
kBT (r) 

hOBo }, 
kBT (0 

(2k~!r))T, •v0+20 2~) U + ~)*B., y ~  (r) = vj. -- . ~j ,  

[ ) ] ( hvo - '  
e (r) = ~Om exp kkB~(r) -- I ~ (r) ---- ct% s (r). 

For simplicity in the writing, the time argument in the functions is omitted here, 

Integrating (i) with respect to the solid angle results in the relation" 

vS,  (0 = 4~avsk~ ( 0 ,  (0 - k, (0 .[ I (k, r) d~, 
(4=) 

where according to (i), I(k, r) has the explicit form 

I (k, r) = .I" k~ (r') ~ (r') exp {-- "~ (r, r')} ds' +'I~ (r,,, n) exp {-- ~ (r, r,,)}, 

Ir--r' I 2 m  
k,,(s)  ds ,  q = - - .  *v (r, r') = cZ% 

(3) 

Substituting (3) into (2) results in an integrodifferential equation for the vibrational en- 
ergy density [2] 
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+ v t r )  v + ~  ~( r )=  
~o (r) 

G (r, r ' )  ~ (r') dr' + z ~ (r) + ~ (r),, 
v 

(4) 

where we have introduced the following notation: 

O (r, r') = ~ q  f v3k~ (r)/~ (r') exp {-- % (r, r')} dr, 
p (r) . I r - -  r'l 2 

(av) 

1 ! dv I dQkv(r)fv ( r n '  n)exp {--zv(r, r.)}, , ( r ) - -  P(r) . . 
(Av) (4a) 

l 1 1 1 8ahBv~ 
(r) ~o (r) T* ~ c ~ 

(5) 

(6) 

(7) 

A sequential quantum-statistical derivation of the equations presented was first given in 
[2,5-7]. However, let us note that it is convenient to simplify the kernel G(r, r') of the 
fundamental equation of the theory of nonequ/llbrium diatomic gas radiation transfer (4) for 
practical computations. Followlng [2, 7], expression (5) is successfully integrated approx- 
imately with respect to the frequency in an arbitrary spatially inhomogeneous case, which 
results in the expression 

( + ) ' 1 ~  m~B = p ( r ' ) ( T  (r) T (r')) 1/~ 
O (r, r') = (hc) s/2 ka (T (r) + T (r')) = 

%(r, r ' )=(hc)  3/~ ( + )  

exp {. %V-2-(r' r') } 

V 2  Ir--r' [ z 

l r - i  ~ l 
'/~ B ~ p(s) ds. 

8ka .} T (s) 
o 

(8) 

[8] 
In the spatially homogeneous case, the kernel of (8) takes on the especially simple form 

O(r, r ' ) = k  R* e x p { - - k J r - - r ' l } ,  
4n~ t r - - r ' p .  (9) 

where 

k _ 

l / ~  
l / ~  -b 1/~ 

(i0) 

Here k is the mean absorption coefficient [2, 7], which differs essentially from the corre- 
spondlngmean coefficients of the equilibrium theory introduced by Planck and Rosseland, 

Let us also note that the mean absorption coefficient (10) is useful for calculatlons 
of the vibrational energy density distribution r while it is not used directly in the 
calculation of the radiation intensity. 

A diffusion approximation [7, 9], which permits obtaining analytical solutions for the 
vibrational energy density, the spectral intensity, and the radiation flux density, can also 
be developed in the spatially homogeneous case. 

Another case in which an analytical solution is possible is the radiation of optically thin 
volumes [10]. 
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The need for a computation of the characteristics of multidimensional spatially inhomo- 
geneous volumes of a nonequilibrlum gas often occurs in practical applications, however. In 
math~m-tlcal aspects such a problem is no less complex than the problem of computing neutron 
transport, for whose solution numerical methods, and primarily the Monte Carlo method, are 
used extensively. The possibility of constructing an effective numerical algorithm for the 
solution of the fundamental Integrodlfferentlal equation (4) also exists for the problem un- 
der consideration. 

Let us consider the stationary case (velocity, temperature, and pressure fields are in- 
dependent of the time). The fundamental integrodlfferentlal equation (4) reduces to an inte- 
gral equation by using Green's function of the transfer operator 

( ,) Iv ~s) f d----2- ' ~ (s )  m~ (s, So) = 6 (s -.- so), 

$ 

D v (s, so) = t v (Sol I J ~  (s')l v (s')l " ( I 1 )  
SO 

Here s is the coordinate along the streamline y and~ (s) is the Heaviside function. Using 
(ii) the integral equation for r has the form 

8 (r) = ;~ [ K(r, r')8(r') dr' 4- ~ (r), ( 12 )  

.. K(r , ,  rz) = S Dv (si, s) G (V (s), rz) ds, ( 1 3 )  
v 

~(r0: jo Dr(s,, s)[ 8~ § 
[~ (y (s)) (14) 

v 

where the streamllne r = y(s) passes through the point r,:r, = y(s,), The parameter I -< i, 
whose meaning will become clear later, is introduced formally in (12), but it should tend to 
one in the final results. 

Let us also define the function U(ro, r,, ..., rN): 

U(ro, ri . . . . .  rn) = U(ro, r i ) +  U(ri, r ~ ) + . . .  + U(r,j_, ,  rn), 

where U(ri, r k) = in K (ri, E k) ; then by iterating the integral equation (12) we obtain 

~ (rot = ~ (ro) -t- ~ ;k~ ] "  �9 �9 S exp {U (r o ..... rN)} cp (r~)  dr,.., dry. 
( 15) 

N=I V V 

The Net-,ann series (15) converges since the norm of kernel (13) is less than one, as is 
easily shown. The observed radiation characteristics are related in a simple manner to the 
linear functional F[~] of the vibrational energy density ~(r) 

F [el = I' [ (r)~(r)dr = Q(k) ~ S "'" .[ P (ro,..., rN) [(ro) tp (r~) dro...drN. 
V N=OV V 

(16) 

Here, by following the formal analogy with classical statistical mechanics, quantities of the 
probability density p and partition function Q type are defined for a large canonic ensemble 

p(r0, r,,..., r~; X)= Q-i (X)~ exp {U(r 0, rl,..., r~)}, 

"-I 
.I ....f 

N~0 V V 

(17) 

(18) 

(19) 
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where it is assumed that U(ro) = 0 everywhere, and therefore 0(ro) = Q-*(~). Let us note that 
f(r) in (16) is a known function. Thus, e.g., if we are interested in the spectral intensity 
of the radiation emerging from the volume at a frequency v along the ray ro = to(So), then 

f (So) = q v S k v  ' (to) exp { -- % (r o, r.)}, ro -- r0 (So), 

2 ' 
N = 0  0 V V 

(20) 

In calculating functional (16) it is useful to go over to the integral sums for which we 
divide the space V into a large number of equal cells with volume v, then (16) and (18) be- 
come 

F[,]= Q(~) ~ P(A,)O(Ai), (21') 
A i 

Q (x) = v ~ (Xv) N' exp {U (A0}, (22) 
A t 

where P(A i) is the probability of the states Ai: 

v (~v) ~i 
P (Ai) = Q (~) exp {U (Ai)}, P (A0 = I, (23) 

i 

u (A~) = u (r~o", r~'), r "~ ,  �9 (AO = f (r(0')) ~ (~I) .  " ' "  Nil 

Here A i denotes the phase-space point  of a s t a t e  with a va r i ab l e  nt-.ber of p a r t i c l e s  
A, = (#0 ~ r~'), ..., r~l), 

where N i runs through the values 0 to ~, and rs ti)" belongs to the set of the discrete partition 
cell centers of the volume V at equal elements v. For fixed N there evidently exists (V/ 

v) Ni+* different states A i- 

The probabillstic interpretation of the Neumann series (5) also permits e~am~natlon of 
the state A i as a photon trajectory generated at the point r (1) and experiencing scattering 

; ; A : )  = ~ = ' t e h e c ' ' q " ' n e "  d o : : t : ~ ;  Q n f t n o ~ ,  r ( x ) ,  , . . . ,  i ) .  The mean value of the s ta tes  funct ion 
e ( 

R (A~) = exp {-- U (A0}. 

For any values of the parameter 8 we find within the limits 0 < 8 < 1 

A i Ai 
= VQ- '  (~) ~ (~,) '~ '  = V (t - -  pX ) - 'Q - '  (~). 

Ni:O 
(25) 

_In this case, evaluation of the functional F[c] reduces to finding the mean values R(A) and 

r  

v o  (~) 
F [~1 = -- , (26) 

(l - p~) R (~) 

where 

~(x) = ~ e (A0 �9 (A0. 
A i 

Another method of determining Q(k), which relies essentially on the introduction of the pa- 
rameter l, follows from an examination of the differential equation 

In Q (X) = ~-iQ-i (X) ~, N,X N* exp{U (A3} v N'+' = l-' ~ P (A,) Ni == k-i~-(k), 

I 
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from which 

0 

Here the boundary condition Q(0) ffi v was used. 
(27), we obtain 

-- d~' I. 
N (Z') t '  J (27) 

Consequently, taking account of (21) a n d  

F [el = V exp N (~.') ~"7- 

0 

Let us note that although the probabilities P(A_I) are defined completely (23), the di- 
rect calculation of the mean values R(A), ~ (1), and N(1), needed for the computation of F[c], 
is practically impossible because of the excessively large number of points of the states I 
phase space. This difficulty can be overcome by performing a sufficiently large m-,her of 
tests of the random variable A i distributed with probability P(Ai) :Ai,, Ai2,..., Ai M, from 

which we obtain the mean values of the states functions directly on the basis of the law of 
large nt~bers 

M M M 

S ~ I  s~ l"  S==I 

(29) 

Here M is sufficiently large, however, considerably less than the total n,-,her of phase space 
points which tend to infinity as v § 0. 

Therefore, (26) and (28) define two methods of evaluating F[r when (29) is taken into 
account, if the sequence of random variables Ais is known. 

The method of generating the sequence Ais can be based on the use of the theory of homo- 

geneous Markov chains [11-13]. According to the general theory, we define Wik, the probabil- 

ity of a transition from the state A i into the state ~ which satisfies the conditions 

O ~ W i k < l ,  Z W i h  = l ,  (30) 
Ah 

P (Ai) Wi~ = P (Ak) Wk~- (31) 

Moreover, to satisfy the conditions of the limit theorem [14], it is assumed that any state 
is attainable from any A i in a finite number of transitions. 

The solution of (30) and (31), which is sufficiently general for the subsequent purposes, 
has the following form for N i # 0 and A i # 

~/Ik=[O6Ni'Nk-~-(I--ff')~NI'N~--I3C( 2 | -- O ) ~NI'A'h+I ] ~ka'ia 2 (32) 

and, respectively, for the case N i = 0 and A i @ 

Wik = I q- o 6N l .Nk q- I - -  O 6N i . N ~ - I  ~kWik- 
2 2 

The diagonal elements of the transition matrix Wii are found from the conditions (30). Here 
o is a free parameter of the theory 0 < o < i; w k is the probability of the state A k for a 

known value N k = N satisfying the normalization condition 

=k I" z.~ = ' ( 3 4 )  
( N :~kN ) 
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and Wik is the conditional transition probability defined by the expression 

(~8 Nh ~' exp {U (Ah)} (35) 
wik = iXv)#kn~ , exp {U (Ak)} + (Xv)N/n7 ' exp {U (At)}" 

Solution (32)-(35) written down allows arbitrariness in the choice of ~k with the single 
constraints ~k > 0 for any A k and ~k satisfies the normalization (34). In the simplest case, 
we can set ~k = n-*(n -- l)-Nk, n = V/v. The following version of the selection of ~k is con- 

siderably more general and, moreover, more effective 

= / ~  (r(ok)) Z (6~) I r(ok)) X (r(2k) ! ~h)) �9 �9 �9 X (r(,~ k) J r(~h)_,), N ~ / >  ], ~k 
[ ~, (r  N~ = o ,  

where ~ = i, 2 for r i ~ Zk: 

(367 

X (r~l rh) > O, .~ (rO > O, 
X (r, I r,)i-- O, ~ X (n I r~) -- I, ~ ~ (n) 

rt~V rt~V 

Here ~(ri) and x(ri[r k) are arbitrary functions satisfying conditions (37). 

see that conditions (37) automatically result in the normalization (34); 

(37) 

It is easy to 

The solution presented for system (30) and (31) allows three kinds of transitions: 

I. transitions without a change in the number of scattering centers (N k = Ni); 

II. transitions with an increase of one in the number of centers (N k = N i + i); 

III. transitions with a diminution by one in the n,-,her of centers (N k = N i -- i), 

The explicit scheme for constructing the sequence Ais on the basis of the solution (32)- 

(37) obtained starts with performing a type of transition from the arbitrarily selected ini- 
tial state A i. It is assumed that only transitions of the types I, II, III, which are real- 

ized with the probabilities ~, 1/2(1 -- o), 1/2(1 -- ~), respectively, are allowed for N i ~ 0, 

while the transitions of types I and If, which appear with the probabilities 1/2(1 + if), i/ 
2(1 -- ~), are allowed for N i = 0. Following this, a finite state ~ is performed with prob- 

ability w k for the already known value of N k. A r~ k) is hence first selected randomly with 

the probability ~(r~ k)) , then an r~ k) is randomly selected with the conditional probability 

X(-~ k) r(k)), then an ra (k) is randomly selected with the conditional probability X(z2(k)r~(k)), 
etc. 

We find the ~ as a result of the random performance with the probability (36)p where 

if it out that = AI(A k) = A i) .!k) - (1) , , Nk = rNi , we assume that the 

transition A i § A i holds. Otherwise (~ # Ai), the random variable ~; distributed uniformly 

in the range 0 ~-~ ~ ~ I, is performed, where if ~ < Wik , then the transition into the new 

state A i § ~ is realized, and for ~ >Wlk we consider that the transition A i § A i holds and 

the state A i is repeated in the sequence Ais being performed. To determine the next state 

of the sequence Ais , the procedure described is repeated starting with a performance of the 

type of the next transition, etc. 
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The scheme described for drawing the transitions satisfies the condition of the limit 
theorem on the attainability of any state A k from any A i in a finite n,-~ber of transitions, 
Let us now show that the normalization conditions (30) are satisfied for each Ai, 

Let P(~ ~Wik) = I --Wik be the probability of the event ~ ~Wik , then taking account 

of (32) and (34), we obtain for the case N i ~ 0 

Wil ---- o=, + o ~ nhP (~ > wi~) 
Ak 

(Ak .I,A i .NI~N k ) 

§176 ( ) Z = nhP >1 wl ) + 1 2 - a Ah 

k 
(Mk.,,Nl-~-I ) ( Nk..N i--l ) 

~ < )$ = #h+ I --o 

k 
(Ni=Nk) (Nk=Ninu I ) (N~-----Ni--I) 

(A k ~.A t ) 

2 8N~.~k+l ~kWi~ = 1 -  Wi~. 

(Ak~-A i ) 

The proof fo r  the case N ~  = 0 is  performed per fec t l y  analogously. There rems__~_ns to show t h a t  
the detailed balance con~Itlons (31) are satisfied, which is seen easily by direct substitu- 
tion of (32), (33), and (35) into (31). 

On the basis of the l~m~t theorem [14], the described scheme permits the construction 
of a stationary sequence Ais (the Markov chain trajectory). Then F[r can be evaluated by 

means of (26) and (29), or (28) and (29). Let us note that according to the limit theorem, 
the initial state A i can be selected arbitrarily; hence, for definiteness it is convenient 

to perform it with the probability w i for N i - 0. 

We use the remaining arbitrariness in giving ~so that states yielding a large contribu- 
tion to F[~] would be selected with the highest prob~'billty for the sequence Ais being per- 

formed. Starting from (21), it follows that the choice of the probability ~k, proportional 

(k) (k) {U(~) } is optimal. This can be achieved most simply by to the factors f(ro )@(rNk ) exp 

the following selection of the functions ~D(ro) and X(ri[r k) for z i ~ rk; 

f, = f (rO, (rO = t (rO, 

~. (rk) -- [.  (rh) , X (ri Irk) ---- K (rk, r,) tp (rO 
~ :  [ ,  (r,) ~ K (rk. r,)c# (r,) 

rs~V rs~V 

(38) 

Therefore, the determination of w k by using (36) and (38) permits the efficient calcula- 

tion of #(A), while for the optimal evaluation of R(I) or N(A) from these same considera- 
tions, we should set f(r k) = @(r k) = i. 

Now, when the procedure for calculating the mean values of the states function A i has 
been determined, we discuss two methods of determining Q(A) on the basis of ~25) and (27), 
According to (38), the greatest quantity of trajectories is generated in that part of the 
states space A i where the probability P(A i) is relatively large. On the other hand, since 
the function R(A i) is inversely proportional to the probability P(A i) , it is clear that the 
low-probability states, which are relatively small in the sequence Ais being generated, also 

yield significant contributions to R(I). This is why a calculation using ~27) is more effi- 
cient. The meaning of the introduction of the paramete r I is the realization of this calcu- 
lation. 
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Finally, let us turn t o  the continual limit v + 0, then the positions of  the possible 
photon scattering points are limited only by the volume V itself. For greater definiteness, 
let us examine the case when the functional F[r is the spectral intensity of the radiation 
emerging from the volume at a frequency ~ along the ray ro = to(so), A special considera- 
tion is necessary here since in this case function f(r) governing functional (16) is slngu- 
lar.r It. (i)is convenient torintroduce new notations: A i = (s~i), r~i), r~i), ..., r~i)), dA i = 

ds~i) urx ra(i), ..., dr~ i), then the probability density of the event A i takes t~e form 
-i 

. l 

P ( A | ) =  . ~Ni exp{U(Ai)} ,E;~ . . .SP(AOdA t = I, (39) 
Q (~) 

Nt~O 0 V V 

(L) = ~ ~ . f ~ " "  Sexp{U(r~ r,, . . . ,  rN)}dsodrt . . .drN.  
Nm0 0 V V 

The spectral intensity o f  the radiation emerging from the volume is easily obtained in the 
form 

k 

l~(L) = / e x p  ~(~,,) ~.' ) 
I [el (1 - -  13~.) R (~.) b 

analogously to the derivation of (26) and (28), where ~ is the geometric path of the ray ro = 
t o ( s o ) .  

Le t  us  n o t e  t h a t  be~iause o f  t h e  p a s s a g e  t o  t h e  l i m i t  v § 0,  f o r m u l a s  (29) r e m a i n  v a l i d ,  
Here  ~(A ) = f ( s o ( i ) ) ( P ( r ( ) ) ,  w h e r e f ( s o )  i s  d e f i n e d  by (20 ) .  i N _ 

The transition probability density Wik is determined by the substitutions ~k + ~k and 

Wik § Wik in (32) and (33), where w k is the probability density of the state ~ for a known 

( , ' ~ " f ( ~ h )  l r~k) ) ' '"  ~k N~-- ," , ( 4 1 )  ~k = ~t(s(~ r('k) irihq X'(r(~) It(k) ~ Nk > / l  

N, =0,  

f~ (so) X (r l  r') = K (r', r) (p (r) 
(so) = , , ( 4 2 )  

S K (r'., r) (p (r) dr J" 
0 

In this case the normalization condition becomes 

I 

.f . I  S dr K' = , .  
0 V  V 

The conditional transition probability @ik is found by the passage to the limit v § 0 in 
( 3 5 ) :  

Nk N (Ai) (43) 
wi~ = )~Nk 11 (A0 + )N~ II (Ah) 

The f o l l o w i n g  n o t a t i o n  i s  u s e d  h e r e  f~ (so)  = f ( s o ) ,  f 2 ( s o )  = f ( s o ) ~ ( r o  (so)), 

H (Ah)= 

(p (r~ h)) (p (r(2h)) q~ (r~k)) 
C,(s(ok) ) • • ) . . .x(r~k)_,  ),  N ~ I ,  

~z(S(o~)), Nh ---- 0, 

r(oh) = ro(S(ok)), •  SK(r, r ' )cp(r ' )dr ' .  
V 

(44) 

(45) 
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Generation of the trajectory Ais starts with performance of the type of transition from 

the arbitrary initial state A i exactly as in the discrete case described above, The finite 
state ~ is then performed; First the point s~ k) is selected randomly on the ray ro = to(So) 

with the probability density ~ (s~k)), then the point r~k)with the conditional probability 

de=ity lJk)), Jk) (k), ro~So / ,  and afterwards the point  r !  k) i s  s e l ec t ed  wi th  the 

conditional probability density -''X(r~k)[r~k)), e tc .  Having completed the random selection of 
the state ~ with the probability density ~ in such a manner, the transition A i § A k itself 

with probability Wik should be performed. Analogously to the discrete case, if ~ < ~ik (~ 

is a random variable distributed uniformly in the range 0~ ~i), the transition to the new 
state A i is realized; otherwise, A i § A~. The procedure described is repeated to deter- 

mine the next state. For definiteness it is convenient to perform the initial state A i with 

the density wi at N i = 0. Let us also note that the free parameter of the theory 0 < o < i 

is defined by the condition of m~xlmal convergence of series (29); in particular, it is pos- 
sible to set o = i/3. It should he mentioned that a more exact value of the absorption coefm 
llcient k .(r) must be used in (20) in the calculation of the spectral radiation intensity 
than in t~e integrodifferential equation (4). This is related to the fact that the kernel 
G(r, r') is an integral quantity in conformity with (5). 

The procedure described for finding the Markov chain trajectory is convenient for the 
evaluation of ~(~) on the basis of (29). For an effective calculation of ~(~) or N(I), this 
procedure should be altered somewhat, exactly as in the discrete case, by setting f(s) = 
~(z) ffi I in (41)-(45). 

An especially great simplification is possible for optically thin radiating volumes. In 

this case it is convenient to set ~(So) = I/Z, X(rlr') = I/V in (41) to find ~(X), R(X), or 
N(~), then we obtain in place of (43) 

w~k = (~I0 N~ exp {U (Ak) } 
(%V) Nk exp {U (Ah)} -]- (~V) Ni exp {U (At)} 

The proposed variation on the Monte Carlo method differs from other methods used in the 
theory of neutron transport [15, 16] and radiation scattering [17, 18] in that it relies sub- 
stantially on the theory of homogeneous Markov chains. No less important is the methodolog- 
ical difference associated with normalization on a large ensemble (39) with a variable num- 
ber of particle scatterlngs, as well as the numerical realization of the whole procedure 
(29), (40)- (45). 

The approach described affords the possibility of a polynomial approximation in % for 
F[r with subsequent extrapolation from the domain where the Ne,~nn series converges rapid- 
ly ~ < i, to the desired value I = i. The considered approach is evidently also applicable 
in the neutron transport theory and the scattering theory for incoherent radiation since the 
structure of the appropriate equations is analogous to (4) and (12). 

NOTATION 

~ n = k/k, unit vector of photon momentum; l(k, r), spectral radiation intensity; I v 
source function; k, wave vector of the electromagnetic radiation; ~(r), absorption coeffi- 
cient of a diatomlc gas at the frequency ~; r vibrational energy per unit mass of gas; 
E~ equilibrium value of c(r); T~ vibrational relaxation time; p(r), mass of gas per 
unit volume; Sv(r), spectral density of the electromagnetic radiation flux; N(r), number of 
diatomlc molecules per unit volume; V(r), mean gas velocity at a point r; A~, vibrational 
bandwidth; j, rotational quantum number; ~, n,mher of the vlbrational--rotational branch; 
T(r), local translatlonal--rotational temperature; Tv(r), local vibrational temperature; k B 
Boltzmann constant; c, speed of light; m, mass of the diatomic molecule; Vo, natural fre- 
quency of kernel vibration of a diatomic molecule; B, Einstein coefficient of the stimulated 
transition 0 § i; h = 2 ~, Planck's constant; ~, molecule dipole moment; re, equilibrium 
internuclear spacing; m e ffi re/C, center of the vlbratlonal--rotational band; Be, rotational 

constant of the dlatomic molecule; d~, solid angle differential; l.,(r , n) spectral intens- 
�9 V n �9 

ity of the external radiation penetratlng through the boundary point r n of the volume V in 
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the direction m = E/k; T*, radiation deactivation time of molecules; k, mean absorption co- 
efficient; R*, probability of radiation deactivation of the molecules. 

LITERATURE CITED 

i. D. Sampson, Equations of Energy Transfer and Moment of Momentum in Gases with Radiation 
Taken into Account [Russian translation], Mir, Moscow (1969). 

2. V. I. Kruglov, Author's Abstract of Candidate's Dissertation, Minsk (1975). 
3. R. M. Goody, Atmospheric Radiation, Oxford Univ. Press, London (1964). 
4. S. E. Gilles and W. G. Vincenti, J. Quant. Spectrosc. Radiat. Transfer, i0, 71 (1970). 
5. V. I. Kruglov, Dokl. Akad. Nauk BSSR, 19, 212 (1975). 
6. V. I. Kruglov, Teor. Mat. Fiz., 32, 401 (1977). 
7. V. I. Kruglov and Yu. V. Khodyko, Int. J. Heat Mass Transfer, 21, 163 (1978); 21, 169 

(1978). 
8. M. A. El'yashevich, V. I. Kruglov, and Yu. V. Khodyko, Pis'ma Zh. Eksp. Teor. Fiz., 20, 

95 (1974). 
9. V. I. Kruglov and Yu. V. Khodyko, Zh. Prikl. Spektrosk., 19, 404 (1973). 

V. I. Kruglov and Yu. V. Khodyko, Zh. Prikl. Spektrosk., 23, 289 (1975). 
I. Z. Fisher, Usp. Fiz. Nauk, 69, No. 3 (1959). 
D. A. Chesnut and Z. W. Salsburg, J. Chem. Phys., 38, No. 12 (1963). 
G. E. Norman and V. S. Fillnov, Teplofiz. Vys. Temp., ~, No. 2 (1969). 
W. Feller, Introduction to Probability Theory and Its Applications, Wiley (1968). 
J. Spanler and E. M. Gelbard, Monte Carlo Principles and Neutron Transport Problems, 
Addison-Wesley (1969). 
I. M. Sobol, The Monte Carlo Method, Univ. of Chicago Press (1975). 
S. M. Ermakov and G. A. Mikhailov, Course in Statistical Modeling [in Russian], Nauka, 
Moscow (1976). 
G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, et al., Monte Carlo Method in Atmo- 
spheric Optics [in Russian], Nauka, Novoslbirsk (1976). 

i0. 
ii. 
12. 
13. 
14. 
15. 

16. 
17. 

18. 

METHODS FOR CALCULATING THE ANISOTROPY OF RADIATION BASED ON 

AN APPROXIMATION OF THE RADIATION PROPERTIES OF SURFACES 

S. P. Rusin UDC 536.3 

The spatial distribution of radiation is examined in calculating radiation heat 
transfer between surfaces in a diathermal medium. 

Contemporary technological processes require a more detailed study of the spatial dis- 
tributlon of radiation in calculating radiation heat transfer between surfaces in a dlatherm- 
al medium. 

Radiation heat transfer for surfaces with arbitrary emissivities and reflectivities was 
analyzed very completely in [i] by assuming that the temperature distribution and the optical 
parameters are given and using the integral equation 

Ief~M , sM) = e (M, sM) I o (M) -+- .[ r (M, s M, SNM ) %if(N, sum ) K (M, N)dFu, (1)  
F 

where lef f and Io are, respectively, the effective and blackbody radiation intensities; s, 

direction of emission (reflection); r, brightness coefficient; E, directional emissivity; 
K(M, N) - d~ (M, N)/dFN, where d@ is the elementary angular coefficient and lef f is the quan- 
tity sought. 
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